Alex Cobb


Senior Principal Research Scientist
Singapore-MIT Alliance for Research and Technology
Center for Environmental Sensing and Modeling
1 CREATE Way, CREATE Tower #09-03
Singapore 138602
Singapore
Tel.: +65 6516 6170
Email: alex.cobb@smart.mit.edu
ORCiD: 0000-0002-3128-3002
Web of Science ResearcherID: ABA-8085-2020
Scopus Author ID: 55428424500
Google Scholar: https://scholar.google.com/citations?user=EPbFRtUAAAAJ
ResearchGate: https://www.researchgate.net/profile/Alexander-Cobb-3
GitHub: https://github.com/alex-cobb


I work on the factors controlling the morphology and biogeochemical processes of wetland ecosystems using a combination of theory, remote sensing, and field measurements.

Affiliations and associations

Peatmorph
AGU
EGU
SMART
CENSAM
Universiti Brunei Darussalam

Code

spowtd: Scalar parameterization of water table dynamics

Publications

Peer-reviewed journal articles

  1. Cobb, AR, R Dommain, K Yeap, H Cao, NC Dadap, B Bookhagen, PH Glaser, & CF Harvey. 2023. A unified explanation for the morphology of raised peatlands. Nature, doi:10.1038/s41586-023-06807-w (accepted manuscript, ResearchGate).
  2. Cobb, AR, R Dommain, RS Sukri, F Metali, B Bookhagen, & CF Harvey. 2023. Improved terrain estimation from spaceborne lidar in tropical peatlands using spatial filtering. Science of Remote Sensing 7:100074, doi:10.1016/j.srs.2022.100074.
  3. Ogasahara, M, AR Cobb, RS Sukri, F Metali, & K Kamiya. 2023. Genetic structure and population history of a peat swamp forest tree species, Shorea albida (Dipterocarpaceae) in Brunei Darussalam. Genes & Genetic Systems 98:35–44, doi:10.1266/ggs.22-00112.
  4. Deshmukh, CS, AP Susanto, AR Desai, SE Page, AR Cobb, T Hirano, F Guerin, D Serca, YT Prairie, F Agus, D Astiani, S Sabiham, Nardi, Nurholis, S Kurnianto, Y Suardiwerianto, M Hendrizal, A Rhinaldy, RE Mahfiz, & CD Evans. 2023. Net greenhouse gas balance of fiber wood plantation on peat in Indonesia. Nature 616:740–746, doi:10.1038/s41586-023-05860-9.
  5. Somers, L, AM Hoyt, AR Cobb, S Isnin, MA Suhip, RS Sukri, L Gandois, & CF Harvey. 2023. Processes controlling methane emissions from a tropical peatland drainage canal. Journal of Geophysical Research: Biogeosciences 128(3):e2022JG007194, doi:10.1029/2022JG007194.
  6. Watmough, S, S Gilbert-Parkes, N Basiliko, JL Lamit, …, AR Cobb, …, G Zahn. 2022. Variation in carbon and nitrogen concentrations among peatland categories at the global scale. PLOS ONE 17(11):e0275149, doi:10.1371/journal.pone.0275149.
  7. Dadap, NC, AR Cobb, AM Hoyt, CF Harvey, AF Feldman, E-S Im, AG Konings. 2022. Climate change-induced peatland drying in Southeast Asia. Environmental Research Letters 17:074026, doi:10.1088/1748-9326/ac7969.
  8. Apers, S, GJM De Lannoy, AJ Baird, AR Cobb, …, M Bechtold. 2022. Tropical peatland hydrology simulated with a global-scale land surface model. Journal of Advances in Modeling Earth Systems 14:e2021MS002784, doi:10.1029/2021MS002784.
  9. Verbeke, BA, LJ Lamit, EA Lilleskov, SB Hodgkins, …, AR Cobb, …, JP Chanton. 2022. Latitude, elevation, and mean annual temperature predict peat organic matter chemistry at a global scale. Global Biogeochemical Cycles 36:e2021GB007057, doi:10.1029/2021gb007057.
  10. Addly, AAM, AR Cobb, RS Sukri, SM Jaafar, S Isnin, SK Thamilselvam, SH Gödeke. 2022. Is the residual ash method applicable to tropical peatlands? A case study from Brunei Darussalam. Mires and Peat 28(8): 1–16, doi:10.19189/MaP.2020.GDC.StA.2147.
  11. Mishra, S, SE Page, AR Cobb, JSH Lee, AJ Jovani-Sancho, S Sjögersten, …, DA Wardle. 2021. Degradation of Southeast Asian tropical peatlands and integrated strategies for their better management and restoration. Journal of Applied Ecology, 58(7):1370–1387, doi:10.1111/1365-2664.13905.
  12. Dadap, NC, AM Hoyt, AR Cobb, D Oner, M Kozinski, PV Fua, …AG Konings. 2021. Drainage canals in Southeast Asian peatlands increase carbon emissions. AGU Advances 2:e2020AV000321, doi:10.1029/2020av000321.
  13. Akhtar, H, M Lupascu, RS Sukri, TEL Smith, AR Cobb, S Swarup. 2021. Significant sedge-mediated methane emissions from degraded tropical peatlands. Environmental Research Letters 16:014002, doi:10.1088/1748-9326/abc7dc.
  14. Cobb, AR, R Dommain, Tan F, Heng NHE, CF Harvey. 2020. Carbon storage capacity of tropical peatlands in natural and artificial drainage networks. Environmental Research Letters 15:114009, doi:10.1088/1748-9326/aba867.
  15. Suhip, MAA, SH Gödeke, AR Cobb, RS Sukri. 2020. Seismic refraction study, single well test and physical core analysis of anthropogenic degraded peat at Badas Peat Dome, Brunei Darussalam. Engineering Geology 273:105689, doi:10.1016/j.enggeo.2020.105689.
  16. Cobb, AR, CF Harvey. 2019. Scalar simulation and parameterization of water-table dynamics in tropical peatlands. Water Resources Research 55:9351–9377, doi:10.1029/2019WR025411.
  17. Dadap, N, AR Cobb, AM Hoyt, CF Harvey, AG Konings. 2019. Satellite soil moisture observations predict burned area in Southeast Asian peatlands. Environmental Research Letters 14(9):094014, doi:10.1088/1748-9326/ab3891.
  18. Hoyt, AM, L Gandois, Jangarun E, Kai FM, CF Harvey, AR Cobb. 2019. CO2 emissions from an undrained tropical peatland: Interacting influences of temperature, shading and water table depth. Global Change Biology 25(9):2885–2899, doi:10.1111/gcb.14702.
  19. Hodgkins, SB, CJ Richardson, R Dommain, H Wang, PH Glaser, B Verbeke, BR Winkler, AR Cobb, VI Rich, M Missilmani, N Flanagan, M Ho, AM Hoyt, CF Harvey, SR Vining, MA Hough, TR Moore, PJH Richard, FB De La Cruz, J Toufaily, R Hamdan, WT Cooper and JP Chanton. 2018. Tropical peatland carbon storage linked to global latitudinal trends in peat recalcitrance. Nature Communications 9:3640, doi:10.1038/s41467-018-06050-2.
  20. Link, RM, B Schuldt, B Choat, S Jansen and AR Cobb. 2018. Maximum-likelihood estimation of xylem vessel length distributions. Journal of Theoretical Biology 455:329–341, doi:10.1016/ j.jtbi.2018.07.036.
  21. Cobb, AR, AM Hoyt, L Gandois, Jangarun E, R Dommain, Kamariah AS, Kai FM, N Salihah HS and CF Harvey. 2017. How temporal patterns in rainfall determine the geomorphology and carbon fluxes of tropical peatlands. Proceedings of the National Academy of Sciences of the United States of America 114(26):E5187–E5196, doi:10.1073/pnas.1701090114.
  22. Wijedasa, LS, J Jauhiainen, M Könönen, M Lampela, …AR Cobb, and R Andersen. 2017. Denial of long-term issues with agriculture on tropical peatlands will have devastating consequences. Global Change Biology 23(3):977–982, doi:10.1111/gcb.13516.
  23. Baláž, M, R Jupa, S Jansen, A Cobb, and V Gloser. 2016. Partitioning of vessel resistivity in three liana species. Tree Physiology 36(12):1498–1507, doi:10.1093/treephys/tpw081.
  24. Dommain, R, AR Cobb, H Joosten, PH Glaser, AFL Chua, L Gandois, FM Kai, A Noren, Kamariah AS, Salihah S and CF Harvey. 2015. Forest dynamics and tip-up pools drive pulses of high carbon accumulation rates in a tropical peat dome in Borneo (Southeast Asia). Journal of Geophysical Research: Biogeosciences 120(4):617–640, doi:10.1002/2014JG002796.
  25. Ng, BJL, L Hutyra, H Nguyen, AR Cobb, Kai FM, C Harvey, and L Gandois. 2015. Carbon fluxes from an urban tropical grassland. Environmental Pollution 203:227–234, doi:10.1016/j.envpol.2014..
  26. Gandois, L, R Teisserenc, AR Cobb, Chieng HI, Lim LBL, Kamariah AS, A Hoyt and CF Harvey. 2014. Origin, composition, and transformation of dissolved organic matter in tropical peatlands. Geochimica et Cosmochimica Acta 137:35–47, doi:10.1016/j.gca.2014.03.012.
  27. Kai, FM, AR Cobb, AFL Chua, MH Tee, B Ng, L Gandois, and CF Harvey. 2013. An off-grid PV power system for meteorological and eddy covariance flux station in Kranji, Singapore. Energy Procedia 33: 364–373, doi:10.1016/j.egypro.2013.05.077. Highlighted as a Key Scientific Article by Renewable Energy Global Innovations (ISSN 2291-2460).
  28. Gandois, L, AR Cobb, Ing CH, LBL Lim, Kamariah AS, and CF Harvey. 2013. Impact of deforestation on solid and dissolved organic matter characteristics of tropical peat forests: implications for carbon release. Biogeochemistry 114: 183–199 doi:10.1007/s10533-012-9799-8.
  29. Melcher, PJ, NM Holbrook, MJ Burns, MA Zwieniecki, AR Cobb, TJ Brodribb, B Choat L Sack. 2012. Measurements of stem xylem hydraulic conductivity in the laboratory and field. Methods in Ecology and Evolution 3: 685–694.doi:10.1111/j.2041-210X.2012.00204.x.
  30. Wilczek, AM, LT Burghardt, AR Cobb, MD Cooper, SM Welch, J Schmitt. 2010. Genetic and physiological bases for phenological responses to current and predicted climates. Philosophical Transactions of the Royal Society B: Biological Sciences 365:3129–3147, doi:10.1098/rstb.2010.0128.
  31. Gu, Y, N Kaplinsky, M Bringmann, AR Cobb, A Carroll, A Sampathkumar, TI Baskin, S Persson, C Somerville. 2010. Identification of a CESA-associated protein required for cellulose biosynthesis. Proceedings of the National Academy of Sciences of the USA: Biological Sciences 107(29):12866–12871, doi:10.1073/pnas.1007092107.
  32. Isnard, S, AR Cobb, NM Holbrook, M Zwieniecki, and J Dumais. 2009. Tensioning the helix: a mechanism for force generation in twining plants. Proceedings of the Royal Society B 276: 2643–2650, doi:10.1098/rspb.2009.0380.
  33. Choat, B, AR Cobb and S Jansen. 2008. Structure and function of bordered pits: new discoveries and impacts on whole-plant hydraulic function. New Phytologist 177: 608–626, doi:10.1111/j.1469-8137.2007.02317.x.
  34. Cobb, AR, B Choat and NM Holbrook. 2007. Dynamics of freeze-thaw embolism in Smilax rotundifolia (Smilacaceae). American Journal of Botany 94(4): 640–649, doi:10.3732/ajb.94.4.640.
  35. Choat, B, TW Brodie, AR Cobb, MA Zwieniecki and NM Holbrook. 2006. Direct measurements of intervessel pit membrane hydraulic resistance in two angiosperm tree species. American Journal of Botany 93: 993–1000, doi:10.3732/ajb.93.7.993.
  36. Cobb, AR, NM Nadkarni, GA Ramsey, and AJ Svoboda. 2001. Recolonization of bigleaf maple branches following experimental disturbance. Canadian Journal of Botany 79(1): 1–8, doi:10.1139/b00-134.
  37. Nadkarni, NM, AR Cobb, and R Solano. 2000. Interception and retention of macroscopic bryophyte fragments by branch substrates in a tropical cloud forest. Oecologia 122(1): 60–65, doi:10.1007/PL00008836.